
Lecture 1

Introduction to Malicious Software

Malware Definition and Goals

Malware Taxonomy

Types of Classification

Classification Units

Major Malware Types

Malware: Software designed to violate a system's security policy

Goals include disruption, espionage, damage and theft

Examples shown through malicious scripts that create unauthorised privileges

Functional: Based on distinguishing features (virus, worm, etc)

Behavioural: Based on exhibited behaviour

Authorship: Based on creators/tools used (focuses on attribution)

Malware types: Broad categories (worms, viruses, trojans)

Malware families: Specific groups (GandCrab, Ryuk, Sodinokibi)

Samples: Specific instances with unique signatures

Trojan Horse: Program with both an overt (documented) and covert (hidden) purpose
Often uses command-and-control servers

Rootkit: Pernicious trojan that hides itself on systems
Changes system reporting programs

Can operate at kernel level

Difficult to detect using standard tools

Defense Strategies

Virus: Program that inserts itself into files and performs actions
Has insertion and execution phases

Types include:
Overwriting viruses

Companion viruses

Parasitic viruses

Memory-resident viruses

Boot-sector viruses

Multi-partite viruses

File infectors (including macro and script viruses)

Worm: Self-replicating program that copies between computers
No need for human interaction

Can spread exponentially (e.g., Code-Read infected 359,000 computers in <14
hours)

Other Types:
Downloaders/Droppers: Download or extract additional malware

Backdoors/Remote Access Tools (RATs): Bypass authentication

Rabbit viruses: Consume all resources

Logic bombs: Trigger on specific events

Spyware: Record user information

Botnets: Networks of infected computers

Ransomware: Inhibits resource use until payment
Locker-Ransomware: locks computer to prevent access

Crypto-Ransomware: encryption of files to make them inaccessible

Wipers: Destroy data

Cryptominers: Use resources for cryptocurrency mining

Grayware: Annoying but less serious than malware

Adware: Display advertisements, often targeted

Emphasised recognising anomalous behaviour

Ongoing arms race between developers and defenders

Lecture 2

Anatomy of a Binary

The C Compilation Process

ELF (Executable and Linkable Format)

ELF Components

Four phases of compilation:
1. Preprocessing: Expands directives, macros

2. Compilation: Translates to assembly language

3. Assembly: Converts to object files (machine code)

4. Linking: Combines object files into exectuable

Object Files vs Executables:
Object files are relocatable (not bound to specific addresses)

Executables are ready to load at a particular memory address

Static libraries merge into binary

Dynamic libraries resolve at runtime

Standard binary format on Linux

Structure includes:
Executable header (first)

Program headers

Sections

Section headers (last)

Executable Header: Describes format and structure

Binary Loading and Execution

Assembly Language Basics

Binary Analysis Challenges

Contains "magic value" (0\x7f followed by "ELF")

Specifies entry point address

Section Headers: Describe contiguous, non-overlapping chunks of code/data
.init : Initialisation code

.text : Main program code

.data : Initialised variables

.bss : Uninitialised variables

.rodata : Read-only data (constants)

Program Headers: Used by OS for loading and execution

Define segments for runtime

Map sections to memory segments

OS sets up process with virtual address space

Interpreter (e.g., ld-linux.so) loads binary

Controls transfers to interpreter which handles relocations

Then jumps to program entry point

Registers: Small storage locations on CPU
General purpose (rax, rbx, etc.)

Special purpose (rip, rflags)

Common Instructions:
Data movement: mov, xchg, push, pop

Arithmetic: add, sub, inc, dec, neg

Logical: and, or, xor, not

Comparison: cmp, test

Control flow: jmp, call, ret

Stack Operations:
LIFO (Last In First Out) structure

Used for function calls, local variables, return addresses

Frame pointers (rbp) and stack pointers (rsp)

Function prologues and epilogues

Lack of symbolic information

No type information

No high-level abstractions

Mixed code and data

Location-dependent code and data

Lecture 3

Malware Functionalities

Infection Vectors

Malware Components and Functionality

Phishing: Impersonating legitimate entities (to obtain information)

Homograph attacks (using similar-looking characters)

Spearphishing (tailored for specific victims)

Spam email with malicious links/attachments

Web Vulnerabilities:
Malvertising (malicious advertising)

Compromised websites
SQL injection, XSS

Drive-by downloads (unintentional download of malicious code)

Watering hole attacks (infecting sites visited by targets)

Common Delivery Channels:
Windows macros and scripts

Exploit kits: all-in-one tool to launch exploits against vulnerable programs

Fileless malware: misuses existing utilities to avoid detection

Downloader: Downloads additional malware from internet

Dropper: Embeds and extracts additional malware components

Keylogger: Intercepts keystrokes
Methods: GetAsyncKeyState(), SetWindowsHookEX()

Replication: Spreading mechanisms

Code Injection Techniques

Fileless Malware

Via removable media

Network propagation

Command and Control (C2):
Communication with attacker-controlled servers

Protocol types (IRC, HTTP/HTTPS, P2P, DNS tunneling)

Botnet structures (centralised, hierarchial, peer-to-peer)

Persistence Mechanisms:
Registry modifications

DLL search order hijacking

COM hijacking

Creating services

Startup folder items

Process Injection Methods:
Remote DLL Injection

Target process forced to load malicious DLL into memory space

Remote Executables/Shellcode Injection
Malicious code injected directly into memory with no trace on disk

Hollow Process Injection

Executable section of legitimate process is replaced with malicious version

Code Injection via Buffer Overflow

Hooking Techniques:
IAT Hooking (Import Address Table)

Inline Hooking

Uses existing utilities to avoid footprints
"Living off the land"

Uses PowerShell, WMI, registry

Resides in volatile memory

Harder to detect with traditional methods

PowerShell commonly abused:

Provides access to OS functions

Leaves few traces

Can execute code directly from memory

Lecture 4

Malware Analysis

Early Malware Analysis Approaches

Early Days

Traditional Malware Characteristics

Signature-Based Detection

Types of Signatures

Minimal effort to collect samples

Manual reverse engineering for analysis

Simple signature-based detection was effective

Used hash signatures (e.g., MD5) for identification

Written in assembly/C/macro code

Spread via file infection, network, or removable media

Typically unprotected and non-obfuscated

Easily detected with signature-based methods

Byte-Stream signatures: Specific patterns of bytes
Simple but prone to false positives

Easily evaded with minor changes

Checksums (e.g., CRC32):
Applied to byte-streams

Weak against collision attacks

Cryptographic hashes (e.g., MD5, SHA):

Static Analysis

Processes & Challenges

Disassembly Approaches

Limitations

Dynamic Analysis

More resilient against collision attacks

Easily defeated by small file changes

Fuzzy hash functions:
Detect groups of similar files (same malware family)

Use locality-sensitive hashing (LSH)

Allow for detecting variants with small changes

Graph-based hashes:
Computed from call graphs or control-flow graphs

Time-consuming signature generation

Growing database size

Easily defeated by code protection techniques

Extracts properties without executing code (over-approximation)

Complete static analysis identifies all violations but may report false positives

Sound static analysis under-approximates behaviours (no false positives but may miss
violations)

Linear Sweep:
Used by tools like objdump, WinDbg

Processes code sections sequentially

Complete coverage but easily confused by data in code

Recursive Traversal:
Used by tools like IDA, OllyDbg

Follows control paths

Better at distinguishing code from data

May miss code due to unresolved indirect control flow

Difficulty separating code from data

Variable-length instructions (x86)

Indirect control transfers

Loss of information (variable names, types, etc.)

Characteristics

Techniques

Goals & Implementations

Analysis Environments

Code Coverage Strategies

Shift to Advanced Detection

Behaviour-Based Detection

Machine-Learning Detection

Executes program to monitor behaviour

Under-approximates behaviours but is sound (no false positives)

Observes actual execution paths

Dynamic Disassembly: Records instructions during execution

Debugging: Monitors execution with breakpoints

Control Flow Analysis: Creates graphs of execution points

System Call Monitoring: Tracks OS interactions

Visibility: See as much execution as possible

Resistance to Detection: Hide monitoring from malware

Scalability: Handle large volumes of samples

Virtualisation: Hardware-level VM

Emulation: Software simulation of hardware

Simulation: Imitation of abstract model

Sandboxes: Isolated execution environments

Test Suites: Running with known inputs

Fuzzers: Generate inputs automatically

Symbolic Execution: Represent variables symbolically

Monitors events that characterise program execution

Infer behaviours from system events

Focus on high-level malicious behaviours

Can detect novel malware with similar behaviours

Automated analysis of patterns

Analysis Tools

Categories

Analysis Challenges

Adaption to new threats

Feature extraction from binaries

Classification of unknown samples

Disassemblers: IDA Pro, Hopper, radare

Debuggers: gdb, OllyDbg, windbg

Analysis Frameworks: angr, Pin, Dyninst

System Monitors: strace, 1trace, Wireshark

Binary analysis is complex and fundamentally undecidable

Lack of symbolic information

No type information

Loss of high-level abstractions

Mixed code and data

Location dependent code

Lecture 5

Malware Anti-Analysis

Overview of Analysis Limitations

Static Analysis Evasion
Obfuscation Techniques

Anti-Static Analysis Methods

Static and dynamic analysis both have limitations that malware exploits

Anti-Analysis techniques aim to prevent proper malware classification or detection

Arms race between malware authors and security researchers

Base64 Encoding: Converts binary data to ASCII format
Used to hide data in plain text protocols (e.g., HTTP)

Example: "One" encodes to "T251"

XOR Encryption:
Single-byte XOR: Each byte XORed with a key value

Multi-byte XOR: More secure against brute force attempts

Used to hide strings, code, and signatures

Junk Insertion:

Adds unreachable code to confuse disassemblers

Junk bytes placed at locations not executed at runtime

Particularly effective against linear sweep disassemblers

Branch Functions:
Modify normal function call behaviour

Packing Techniques

Polymorphic Techniques

Redirect control flow to confuse analysis tools

Make code unreachable for recursive traversal algorithms

Overlapping Instructions:
Creates multiple valid instruction paths in the same code

Exploits variable-length x86 instructions

Breaks disassembler assumption of non-overlapping code chunks

Opaque Predicates:
Conditions with outcome known upfront but hard to deduce statically

Creates more complex control flow graphs

Example: if (((X^2 + X)mod 2) == 0)

Control Flow Flattening:
Obfuscates normal program flow

Uses switch statements in infinite loops with multiple code blocks

Makes code harder to follow and understand

Basic Packing:
Compresses executable content

Adds unpacking stub that extracts original binary at runtime

Modifies entry point to point to stub

Multi-layer Packing:
Hides malicious code under multiple layers of compression/encryption

Each layer needs to be unpacked during analysis

Algorithmic-Agnostic Unpacking:
Uses dynamic analysis to defeating packing

Emulates sample execution until unpacking completes

Self-Emulating Malware:
Transforms code into bytecode

Uses virtual machine to interpret bytecode at runtime

Mutates bytecode in each sample

Encrypted Viruses:
Enciphers payload, uses decryptor at runtime

Evades signature-based detection

Oligomorphic Viruses:
Uses multiple decryptors instead of a single one

Changes decryptors between generations

Polymorphic Viruses:

Dynamic Analysis Evation

Anti-Debugging Techniques

Sandbox Evasion Methods

Changes layout with each infection

Uses a different encryption key each time

Metamorphic Viruses:
Creates semantically-equivalent but structurally different code versions

"Body-polymorphics" - entire code changes while maintaining function

Analyses and mutates its own code in blocks

Process Detecting:
Checks if being traced using APIs: IsDebuggerPresent

Looks at PEB!NtGlobalFlags

Uses ntdll!NtQueryInformationProcess

The ptrace Trick:

Attempts to attach to itself (only one process can trace)

If fails (returns -1), knows it's being debugged

Can be defeated by redefining ptrace() function to always return 0

Red Pills: Programs that detect if running in emulated environment
Example: SIDT instructions to detect VM

System Fingerprinting Categories:

Environmental Artifacts

Timing Checks

CPU virtualisation detection

Process Introspection

Reverse Turing tests

Network artifacts

Mobile sensors

Browser-specific checks

Sleep Evasion:
Waits before executing malicious code

Anti-sleep: Analysis tools may skip sleep calls

Human Interaction Detection:
Monitors for mouse/keyboard activity

Only activates after detecting human-like behaviour

VM/Sandbox Detection:
Checks for VM-specific processes, files, registry keys

Malware Anti-Analysis Tools

Looks for analysis tool artifacts

Examines hardware characteristics

RDG Tejon Crypter: Obfuscation tool

Pafish: Demonstrates sandbox detection techniques

al-khaser: Proof of Concept (PoC) tool showing common sandbox evasion methods

Lecture 6

Buffer Overflow, SQL Injection, and Cross-Site
Scripting

Memory Layout
C Call Stack

Stack vs Heap Memory Organisation

When a function call is made, return address is put on the stack

Values of parameters are put on the stack

Local variables are put on the stack

Function saves stack frame pointer (on the stack)

On Linux (x86), stack grows from high addresses to low

Pushing something on the stack moves Top Of Stack towards address 0

Stack Frame Structure

Each function has its own stack frame containing:

Stack: Used for function call management, local variables, return addresses

Heap: Grows in opposite direction, used for dynamic memory allocation

Both are regions in the process memory space

Function Call Process

Buffer Overflow
Buffer

Overflow

Examples of Vulnerable Code

Function parameters: values passed to function

Local variables
Return address: address where execution should continue after function completes

Saved base pointer: previous frame's base pointer (saved %ebp)

Frame pointer (%ebp): points to base of current stack frame

Stack pointer (%esp): points to top of stack (growing downwards in x86 structures)

1. Calling function:
Push arguments onto stack (in reverse order)

Push return address of instruction to follow after control returns to you

Jump to function

2. Called function:
Push old frame pointer onto stack (%ebp)

Set new frame pointer (%ebp) to where the end of the stack is right now (%esp)

Push local variables onto the stack

3. Function return:
Deallocate local variables: %esp = %ebp

Restore base pointer: pop %ebp

Jump to return address: %eip = 4(%ebp)

4. Back in calling function:
Remove arguments from stack

Contiguous set of a given data type

Common in C

All strings are buffers of char's

Put more into the buffer than it can hold

// Example 1: Buffer on stack overflow
char buff[4];
strcpy(buff, "Hello:)"); // Overflow

Buffer is only 4 bytes, but "Hello:)" is 7 bytes (plus null terminator)

Buffer overflow inputs can come from:

Unsafe functions like strcpy() and gets() will copy data until a null terminator without
checking buffer size.

Code Injection
Buffer overflows can be exploited for code injection by:

Defences Against Buffer Overflows

ebp gets replaced with ASCII values from overflow

When restoring the pointer, it will read corrupted value

// Example 2: Dangerous function
char fileData[50];
gets(fileData); // No bounds checking

Use safer functions like fgets() instead

Text input fields

Network packets

Environment variables

File input

1. Loading code into memory: Injecting shell code that must:
Avoid null bytes (would terminate string functions)

Be self-contained (not rely on loader)

Not depend on stack integrity

Goal often: get a shell/privilege escalation

2. Redirecting execution flow: Getting code to run:

Overwrite return address to point to injected code

Can't insert explicit "jump" instructions

3. Finding the return address: Determining the exact location to overwrite
Without code access, hard to know buffer-to-EBP distance

Approach: try many values or exploit predictable addresses

With ASLR, this becomes much more difficult

SQL Injection

1. Stack Canaries: Values placed between buffers and control data

Types:

Terminator Canaries (CR, LF, NULL, -1) - leverages the fact that scanf, etc.
don't allow these

Random canaries - write new random value @ each process start, protecting
stored value in memory

XOR canaries - same as random canaries, but store "canary XOR control info"

Checked before function returns to detect corruption

2. Address Space Layout Randomisation (ASLR):
Randomises memory locations to make predicting addresses difficult

Adoption timeline: Linux (2005), Vista (2007), mac OS (2007/2011), iOS (2011),
Android (2011)

3. Non-executable stack: Prevents execution of injected code

4. Proper coding practices: Using safe functions, bounds checking, input validation

Attackers manipulate SQL queries through unchecked input

Can lead to unauthorised data access or manipulation

Examples: entering ' OR '1'='1 instead of valid username

Cross-Site Scripting (XSS)

Cross-Site Request Forgery (CSRF)

Malicious scripts injected into trusted websties

Scripts execute in users' browsers

Can access cookies, session tokens, and sensitive information

Browser cannot distinguish between legitimate and malicious scripts

Tricks users into performing unwanted actions on sites where they're authenticated

Exploits the trust a site has in a user's browser

Unlike XSS which exploits user's trust in a site

Lecture 7

Machine Learning for Malware Analysis and
Detection

Basics of Machine Learning

ML in Cyber Security
Use Cases

Supervised vs Unsupervised Learning
Supervised Learning

ML is a set of mathematical techniques enabling computers to learn from data

Helps computers generalise past data to predict future outcomes
Definitions:

"Machine Learning is the science of programming computers to learn from data"

"Field of study giving computers ability to learn without explicit programming"
(Arthur Samuel, 1959)

"A program learns from experience E with respect to task T and performance
measure P if performance improves with experience" (Tom Mitchell, 1997)

Pattern Recognition: Discover characteristics in data to recognise similar patterns
Examples: spam detection, malware detection, botnet detection

Anomaly Detection: Establish baseline normality and identify deviations

Examples: network outlier detection, user authentication

Known number of classes

Unsupervised Learning

ML Tasks

Building ML-Based Malware Detectors

Learning from labelled training data

Used to classify future observations

Unknown number of classes

No prior knowledge

Finds "natural" groupings of instances

Classification:
Given labelled dataset,

Separate instances into predefined classes

Regression:
Given some points,

Predict numerical values

Clustering:

Given an unlabelled dataset,

Group similar elements in unlabelled data

Common Malware Datasets

Feature Selection Methods

1. Gathering Training Examples
Quality and quantity of training examples are crucial

Need both malware and benignware samples

Examples should mirror what the detector will encounter

Collection considerations:
Freshness

Quality/Verifications

Quantity

Target OS

Format (binaries or features)

Source (public/private)

VirusShare

VirusTotal

Androzoo

theZoo (Live Malware Repository)

Microsoft Malware Classification Challenge

EMBER dataset

2. Feature Extraction
Extract distinctive attributes from binaries

Good feature examples:
Digital signatures

Header information

Presence of encrypted data

Imported tables

String features

N-grams

Feature selection considerations:
Choose features that distinguish malware from benignware

Avoid too many features (curse of dimensionality)

Feature scaling is important

Feature representation matters

Manual Selection: Based on domain expertise

Univariate Analysis: Evaluate features individually

Recursive Feature Elimination: Start with all features and eliminate iteratively

ML Algorithms for Malware Detection

Feature Spaces and Decision Boundaries

Logistic Regression

Latent Feature Representations: PCA, SVD to reduce dimensionality

Model-Specific Ranking: Use weights from trained models

3. Training ML Systems
Provide algorithm with labelled

Allow it to distinguish between malware and benignware

4. Testing ML Systems
Measure accuracy using data not included in training

Evaluate how well it detects new malware and avoids false positives

Use appropriate performance metrics

Features create a geometrical space

Decision boundaries separate benignware from malware

Different algorithms create different types of boundaries

Example in 3d space

K-Nearest Neighbours

Creates linear decision boundary (line, plane, or hyperplane)

Good when individual features are strong indicators

Limited with complex relationships between features

Decision Trees

Based on proximity to known samples

If majority of k closest binaries are malicious, classify as malicious

Works well when "closeness" to known samples is meaningful

Good for malware family classification

Generate series of questions through training

Can learn irregular boundaries

Random Forest

Support Vector Machines (SVMs)

Classification boundary (dark line) and margins (dashed lines) for linear SVM separating two
classes (black and white points); squares represent support vectors

May not generalise well to new examples

Decision boundaries can be jagged

Ensemble of decision trees

Each tree trained differently for diverse perspectives

Evaluating Malware Detection Systems

Performance Metrics

Base Rate Considerations

Finds maximum-margin hyperplane separating classes

Kernel trick allows non-linear boundaries

Performs well in high-dimensional spaces

Training complexity increases with dataset size

True Positive Rate (Sensitivity/Recall) : TPR = TP/(TP+FN)

False Positive Rate: FPR = FP/(FP+TN)

Precision (Positive Predictive Value): PPV = TP/(TP+FP)

F1 Score: 2·(PPV·TPR)/(PPV+TPR)

Accuracy: ACC = (TP+TN)/(TP+TN+FP+FN)

ROC Curve: Plots TPR against FPR at various thresholds

AUC: Area under ROC Curve (higher is better)

Base rate: percentage of binaries that are actually malware

No-Free-Lunch Theorem

Precision Base on Base Rate: PPV = (TPR·BR)/(TPR·BR + FPR(1-BR))

Affects precision but not TPR/FPR

Base rate fallacy: ignoring prevalence when interpreting test results

No single ML algorithm works best across all scenarios

Each algorithm has strengths and weaknesses

Model selection requires understanding the problem domain

